)‘ TechMagic

Penetration
Test Report

Sample

OWASP juice-shop February 10th, 2019

mailto:ross@techmagic.co
https://techmagic.co/

Table of content

Executive summary
Findings severity ratings
Scope
Overall security level of the targets in scope
Vulnerabilities by impact
Successful attacks by type
Vulnerabilities by cause
Recommendations
Vulnerability report
demo.owasp-juice.shop
JSA-2.1. Unprotected FTP server
General information
Exploitation proof of concept
JSA-2.2. Retrieve backup files using null byte injection
General information
Exploitation proof of concept
JSA-4.1. Private IP disclosure
General information
Exploitation proof of concept
JSA-2.3. Bypass authentication using SQLi
General information
Exploitation proof of concept
JSA-3.1. Reflected XSS in search functionality
General information
Exploitation proof of concept
JSA-3.2. Broken access control on product reviews
General information
Exploitation proof of concept
JSA-2.4. Arbitrary file upload
General information
Exploitation proof of concept
Remediation report
Recommendations
Library

A4

© 0o N o o0~ bW

N N N N NN 2@ A A A A A A A A QA QA QA QA @A @A @A @A o« o« o
B DM N =2 O O ©W 00 00 N N O O O g b A W W WNDNDDNDDN=-

hd

Executive summary

We conducted a pentest (vulnerability assessment) of the OWASP juice shop
application in order to detect existing web application vulnerabilities and determine
exposure to a targeted attack. All activities were conducted in a manner that simulated a
real threat actor engaged in a targeted attack against OWASP juice shop application with
the next goals:

e Identifying if a remote attacker could penetrate application defenses
e Determining the impact of a security breach on:
- Confidentiality of the company’s private data
- Application infrastructure and its availability
- Confidentiality of the users private information
e Identifying infrastructure issues
e Identifying web application vulnerabilities that could lead to:
- Unauthorized access to confidential data
- Web application users data leak
- Web application DB enumeration in order to retrieve confidential data
- Web application crash
- Exploitation of vulnerable third-party components used by the application
- Malware campaign or targeted attack against web application users with
consequent spear-phishing or SE (Social Engineering) attacks

Efforts were placed on the identification and exploitation of security weaknesses
that could allow a user with limited privileges to access sensitive data, organizational
confidential information, backup files, .etc. The attacks were conducted by taking into
account the check according to the access matrix of all user roles in order to determine
mistakes that could make web applications vulnerable to different kinds of attacks (OWASP
Top 10 vulnerabilities list [1]). The assessments were conducted in accordance with the
recommendations provided in PTES [2] and OWASP Testing Checklist [3] with all tests and

actions being conducted under controlled conditions.

hd

Findings severity ratings

The following table defines levels of severity and corresponding CVSS score range

that are used throughout the document to assess vulnerability and risk impact.

Severity CVSS V3 Score Range Definition

Exploitation is straightforward and usually results in
Critical 9.0-10.0 system-level compromise. It is advised to form a plan
of action and patch immediately.

Exploitation is more difficult but could cause elevated
privileges and potentially a loss of data or downtime. It
is advised to form a plan of action and patch as soon
as possible.

7.0-89

Vulnerabilities exist but are not exploitable or require
extra steps such as social engineering or some actions

Moderate 4.0-6.9 from the end-users. Itis advised to form a plan of
action and patch after high-priority issues have been
resolved.

Vulnerabilities in the low range typically have very little
impact on an organization's business. The exploitation
of such vulnerabilities usually requires local or physical
system access.

0.1-39

No vulnerability exists. Additional information is
Informational N/A provided regarding items noticed during testing, strong
controls, and additional documentation.

Scope

Assessment Details

Domain:
Gray Box Web Application e owasp-juice.shop Subdomains:
Penetration Test e demo.owasp-juice.shop

e admin.owasp-juice.shop

Overall security level of the targets in scope

The following domains/subdomains were assessed during the engagement:
° owasp-juice.shop
° demo.owasp-juice.shop

The overall security level of the tested web application as a result of the penetration
test is ‘1". Revealed issues could allow an attacker to obtain an access to an account of any

person, impersonate other users inside the system, trigger errors by providing invalid

input, access files containing sensitive information, .etc.

I

(You are here

The security levels below are intended to give a high level relative indication of the
position of the application or infrastructure tested in terms of its overall security posture
and in relation to other applications/infrastructures that were tested by our team. In the
below table score ‘0" means lack of any protection measures and ‘5’ being maximum
possible security level:

hd

Grade Grade description

Application/infrastructure has no identified vulnerabilities; its security
mechanisms has been tested and we did not manage to penetrate or bypass
them

Application/infrastructure has no moderate or high-risk, critical vulnerabilities.
Identified low/informational severity issues have very little impact on the
applications security and its end users. It is recommended to review them and
implement required mitigation actions.

Application/infrastructure has no critical or high-risk vulnerabilities, but we have
identified several moderate severity issues. These issues can be chained
together to conduct an attack with significant consequences for the application
and its users or they require extra steps such as social engineering for
successful exploitation. There should be created a mitigation plan in order to fix
the identified issues and minimize a risk of exploitation.

Application/infrastructure contains vulnerabilities that may allow compromise
in some circumstances. It is advised to form a plan of action and patch as soon
as possible.

Application/infrastructure has been partly compromised. It is advised to form a
plan of action and patch immediately.

Application/infrastructure has been completely compromised. It is advised to
form a plan of action and patch immediately.

Please note that the definition of compromise in the above indicator is a wide one
and is based on our professional experience taking into account other test applications or
infrastructures as well as industry best practices and user expectations. From our own
experience, level ‘5 is wusually very rarely reached; most tested applications or
infrastructure fall under levels 1/, ‘2" or ‘3.

hd

Vulnerabilities by impact

Most of the detected vulnerabilities are related to the demo.owasp-juice.shop
domain. These include various Broken Access Control issues, stored and reflected XSS (Cross
Site Scripting) attacks in different parts of the application, unrestricted file upload issues.

Several SQL injection issues were detected on the admin.owasp-juice.shop domain.

Vulnerabilities by impact

B High [Moderate [Low
20

10

demo.owasp-juice.shop admin.owasp-juice.shop

Figure 1.1. Count of detected vulnerabilities by impact.

Successful attacks by type

Most of the detected vulnerabilities are different variants of Broken Access Control
issues. These vulnerabilities allowed us to retrieve sensitive information about other users.
Another dangerous finding is Unrestricted File Upload that allows an attacker to upload an

arbitrary file to the applications’ server.

(,
;
>
N
lav]

o

juice-shop pentest report

Successful attacks by type

30
20
g
8
a8 10
2
0
o @ S ey e)
*‘36 W D o e RN &
5000 ab - 3(95 Dﬁ‘a“ ‘a\\ w° \)Q\G
o «P\ \}g\QB y\g‘a‘e’ " & et AN ‘0\:‘5-; e
)
g@* 2 0,3(@6
Vulnerability
Figure 1.2. Count of successful attacks by type.
Vulnerabilities by cause
Count of detected vulnerabilities by cause
20 Xx88

M Broken-Access-Control
B Unpached software
I Headers security

15 B Lack of error handling
B Malicious link

B Unrestricted Upload of File with
Dangerous Type

N T anls

demo.owasp-juice.shop admin.owasp-juice.shop

Figure 1.3. Count of successful attacks by type.

hd

Recommendations

Due to the serious impact of disclosed vulnerabilities, appropriate resources should

be allocated to mitigate risks and protect the application from malicious threat actors.

Future software development processes should be conducted according to SSDLC's (Secure

Software Development Lifecycle) best practices to prevent additional attack vectors. The

complete list of SSDLC recommendations is listed in the OWASP Secure SDLC cheats sheet

series [4].

We recommend the following:

Fix broken-access control issue according to roles and permissions matrix

Fix file upload issues, add more checks to prevent uploading of invalid files and
links.

Add client-side validation to prevent XSS vulnerabilities;

Add strong server-side validation. Because of the high risk of client-side validation
bypass, there should be implemented strong server-side validation. It could mitigate
such issues as stored XSS, NoSQLi, arbitrary file upload attacks.

Fix error handling. Disclosed by the application error logs could help an attacker to
exploit the vulnerability and fix issues in the submitted payload, enumerate valid
usernames, roles, .etc.

Upgrade insecure third-party dependencies. Please update all used by the

application’s dependencies to prevent exploitation of issues that they introduce.

Long-term recommendations are:

Implement regular security reviews practice. Regular vulnerability assessments will
help you to mitigate security issues in the early stages and save your reputation and
money.

Add secure coding practices to the development process. Please provide training for
developers to expand their knowledge in secure coding. It will help you to mitigate

many vulnerabilities in the implementation phase.

hd

Use package analyzers, static and dynamic application security testing tools in your
development processes. Integrate tools such as the Snyk, Burp Suite, SonarQube, OWASP

ZAP that will help you to detect common issues and vulnerabilities in the application.

10

hd

Vulnerability report

In this section you will find a detailed description of all the detected vulnerabilities,
together with a step by step instruction on how to reproduce every vulnerability and
evidence of a successful exploitation. But, before you move on to the vulnerabilities, here is
a brief explanation of how to understand unique identifiers of the documented issues. We
use the following identifier template for every issue:

JSA-1.2
where,
[J JSA (Juice Shop Application) - abbreviation that describes the tested application
[J 1 - numeric identifier for severity level of the detected vulnerability. Here we mark
severity levels according to the priority of mitigation measures for that issues, so the

most critical issue will receive lower number

Numeric identifier

Severity (Priority)
Critical L
2
Moderate 3
4
Informational 5

[J 2 - numeric identifier for a specific vulnerability in the selected severity level

11

demo.owasp-juice.shop
JSA-2.1. Unprotected FTP server

General information

Using spiders we detected an unprotected FTP server

DEEA[FeL that leaks sensitive application files.
CVSS 3.1 score 7.5 High
References to classifications A01:2021
Status Fixed. Date of retest: dd.mm.yyyy

Exploitation proof of concept

Web application domain for scanning was provided by the customer before the
penetration test started. It's publicly available information and can be found in OWASP
juice-shop project official documentation. We conduct web application vulnerability
assessment using OWASP ZAP scanner.

During the ZAP scan we detected FTP server that contained confidential information

(see fig. 4).

€ > 0 3 @ nNotsecure | demo.owasp-juiceshop/fip T € o
2 Apps (@ Debiarorg @ LatestNews @ Help

~ I ftp
I quarantine ACuUIsIons, md coupans_2013.ma. nak
eastere.gg incsdent-support kol legal.md

packages json. bak suspicioues_errore.ymil

Figure 2.1.1. FTP folder with confidential data.

12

hd

JSA-2.2. Retrieve backup files using null byte injection

General information

An attacker is able to read sensitive files on the

Description application server using null byte injection.
CVSS 3.1 score 7.5 High
References to classifications A01:2021
Status Fixed. Date of retest: dd.mm.yyyy

Exploitation proof of concept
We found two backup files and tried to open them but received 403 Error from the

Server.

&€ = C 1 @ Hotsecure | demo.owasp-julce.shop!fip/package. son bak w € | ° :
i Apps @ Debianorg @ LatestNews @ Help

Forbidden

You don't have permission to access /fip/package.json.bak on this server.

Figure 2.2.1. Attempt to open package.json.bak file.

During the investigation we found that server allows opening only “*.pdf and *.md’
files. After that, we decided to apply null byte injection and tried to open stored on FTP
server backup files. The attack was successfully conducted and we managed to download

backup files from OWASP juice-shop ftp server.

13

hd

Open w || El| package json.bak%D0.md | SR | = = g

"name": "juice-shop",
"version": "6.2.0-SNAPSHOT",
“description”: "An intentionally insecure JavaScript Web Application®,
“homepage"”: "http://owasp-juice.shop”,
"author™: "Bjorn Kimminich <bjoern.kimminich@owasp.org> (https://www.owasp.org/index.php/
User:Bjoern Kimminich)",
"contributors®: [
"Bjdrn Kimminich",
"Viktor Lindstrdm”,
"Josh Grossman",
*Jannik Hollenbach®,
"Timo Pagel®,
"Manabu MNiseki™,
"Gorka Vicente",
"Alvaro Viebrantz",
"Omer Levi Hevroni",
"m4llc3”,
"Johanna A",
"Aaron Edwards",
"Stephen OBrien",
"Jln Wntr",
"Greg Guthe®,
"Abhishek bundela”,
"Achim Grimm",
"battletux",
"AvipD",
“Yuvraj",
"Stuart Winter-Tear",
"Christian Kuhn",
"Dinis Cruz®,
"Joe Butler”
1y
"private": true,
“keywords": [
"web security",
"web application security",

Trahanneast

Figure 2.2.2. Downloaded using null byte injection package.json.bak file.

The file contains a full list of project dependencies and can be used for further
investigation of potential vulnerabilities using Snyk dependencies scanner. Full

package.json.bak file provided as an attachment.

JSA-4.1. Private IP disclosure

General information

Automated scanners have detected misconfigured
headers that can be used by attackers to attack an
application, retrieve sensitive information about
technologies that it uses, .etc.

Description

14

CVSS 3.1 score 3.9 Low
References to classifications A05:2021
Status Fixed. Date of retest: dd.mm.yyyy

Exploitation proof of concept

ZAP found private IP disclosure vulnerability during the initial scan. This information
might be helpful for further attacks targeting internal systems. Also, the file contains the
URL list with other application domains that could be investigated in the next stages in
order to reveal confidential information and find new vulnerabilities. Complete ZAP scan

report provided as an attachment.

File Edit View Anzlyse Report Tools Online Help

://1ocald?ug .owasp-juice.shop” 1113 : i
"http://10cal4200 .ovasp-Juice .shop”., "hrtp :// 19PLTAA0G IBD o0

sendardmode jo) | Mz & 2B EEE OO0 de |/ 6P P 0XERE o€
@ Sites | 4 | |+ Quick Start | = Request [Responses= [4= |
@ LEEE |Header: Text |¥| |Body: Text I (B
" [contexts Al (4TTR/1.1 200 OK i
[Z] Default Context ™\ Ipate: sun, 16 Feb 2019 11:16:22 GMT
v & Sites Server: Cowboy
_— ¥-Powered-By: Express
v 5 R hittp:ffdemo.owasp-uice.shop Access-Control-Allow-Origin: *
__ # GETfavicon.ico XA-Content-Type-Options: nosniff
. ¥-Frame-Options: SAMEDRIGIN v
v p -
° [% GET:ftp h t‘J':,‘,—”‘LIlCO ncp staging. ﬂcromnpp com" i
=<2 ttp: ice-shop-staging. herokuapp.com ['
_ F ¥ GET:main js 1/ /]uice-shop-staging hnrovuapp con, “http://1 U_GLhoat 008"
" # GET:polyfills.js /1ncal3nmd . owasp- juica_shop” 24 41
o ://1ocal3000.owasp-juice.shop",
X

" GET:runtime.is

4 History | S search | [Halerts # 1 | Qutput T & spider I B Active Scan | ==

® @ 7 URL: http://demo.owasp-juice.shop/main.js A

|| GET: http:/idemo.owasp-juice.shop/ a| [Risk: Lol i
= Confidence: Medium
|| GET: http://demo.owasp-juice.shop/ Parameter:
|| GET: http://demo.owasp-juice.chop/sitemap.xmil Attacks :
| | GET: http:/fdemo.owasp-juice.shop/sitemap. xmi Evidence: 192.168.99.100:3000
¥ i Private IP Disclesure CWE 1D: 200

B GET: http:/idemo.owasp-juice shopimain.js /| WwaAsCID: 13

| = [Web Browser X55 Frotection Not Enabled (12) V! Source: Fassive (2 - Private IF Disclosure) X

| Alerts o o 13 Mo Current Scans 4 0 0 Do @0 Mo J o o

Figure 2.3.1. Private IP disclosure.

15

hd

JSA-2.3. Bypass authentication using SQLi

General information

We detected a SQL injection vulnerability that allowed
Description us to bypass an authentication mechanism and get
access to any account in the system.

CVSS 3.1 score 8.2 High
References to classifications A03:2021
Status Fixed. Date of retest: dd.mm.yyyy

Exploitation proof of concept

We conducted penetration testing of the login form and revealed flow to execute
SQLi injection attack against application authentication and get access to another user
account, including administrator account. It was detected due to insufficient user input
validation and broken server-side error handling. The first step was to provoke internal
server error using invalid data. It allowed us to provoke internal server error which resulted

in source code disclosure with a complete request to the database during login operation.

Floan Gmnmc‘a.\ﬁa

] mememoer me

Figure 2.4.1. Internal Server Error that provides full SQL query in response.

16

hd

We decided to conduct a SQLi attack after a detailed server error response analysis.
During the attack, we managed to log into the application under an admin account using

SQLi injection.

Q OWASP Juice Shop © Search... Q WscoeBoad @)

admin@juice-sh.o =
(= Logout e e e () ContactUs M YourBasket ar== E...

3 Recycle

@ Track Orders
All Products

i change Password

Image

Apple Juice (1000m)

Figure 2.4.2. Successful authentication bypass using SQLI.

JSA-3.1. Reflected XSS in search functionality

General information

Automated scanners have detected reflected XSS
Description vulnerability that allows a malicious actor to execute
arbitrary JS scripts, .etc.

CVSS 3.1 score

References to classifications A03:2021, CWE-79

Status Fixed. Date of retest: dd.mm.yyyy

17

hd

Exploitation proof of concept

Our next target was search functionality. Using common templates and best
practices we managed to conduct reflected XSS attacks. The attack resulted in an alert that
contained user cookies. Further investigation of this threat vector could allow the attacker
to steal user credentials or redirect him to the malicious site using spear-phishing

technique.

cookieconseni_status=dismiss;
token=ey hdGoiCi)SUZIHilsINRECCIBIkpXVCI9. ey zd GF O dXMIOUZdWHNZXNZIWIZ GFOY Sl ey pZ
4 Ui} (3

(]

Figure 2.5.1. Successfully conducted reflected XSS attack

JSA-3.2. Broken access control on product reviews

General information

Broken Access Control issue in product reviews allows
Description attackers to submit comments on behalf of any
application user.

CVSS 3.1 score

References to classifications A01:2021

18

Status

Exploitation proof of concept

Fixed. Date of retest: dd.mm.yyyy

To identify broken access control we used Burp Suite proxy interceptor and

modified application requests. The first step was to retrieve the id of the target user from

the reviewers list, returned from the server. After that, we posted a comment under the

admin account and using interceptor replaced author email in the request payload.

Burp iiruder Repzater Window Help
Targei | Proxy | Spider | Scannsr] Intrudar Impam I Sequancer [Dec:u:ler [Comparer Tiﬂmer I Froject options qur options Tnlms]

Target: hitp:idemo.cwasp-juice.shop | | 7

Request Response
Ja_a_w Param[HmTHa] _[ngThemsTHer]
Accept appicationjson, tewtiplain, W~ [HTTRM 1 201 Crested .
Becet-Language: ui-UA ukg=0.8 en-USg=0 5 eng=0.3 Dister S, 10 et 2018 150546 GMT 1
M Accort-Errading: cip, deflte Server: Cowboy
Referer N icero cwasp-jice sop) X-Pawered-By. Exress
Suthorization Bearsr Aecsss CortiolAlow.-Origin *
| ey b GEDUEU T RIRINRS e CA R Y C I8 ey ZACFOd A 20 M T Malhed TEFOY SiEey b TOIRMS W TN -Comen-TypeOpliors. nesnift
I S L C BV B I F VLGP | STIL XML MG wwICGF 26 3dvemCIDew Ty DI Y Tel a3z *Frame-Options: SAMECRIGH
MOLSECWEIh ZEA Y| Tl 2 ORI sy e ne 3R 2opb ke 4w L AUMCIsinByh 22t Conent-Type: spplcationjsor charsst=utr.8
el B NZSEIRRLZIE | BHOUE3 Il 30 YR ZEF Do MU e SOWI DA Zigkza Conent Lenegh: 12
| wljfwhwiclBi Y XRIZEF Djo M AxOE0wH Mzhgkztw] CEMTUDD Etag WM 3-7 Z0B TPorlRADIDKwir hwu T DE0"
TowhCMDMiva L NTQECOIM Oy 10 U= X0z u-LC—wan?LrQ] i)LW ArCEUzEy MY SHar03 “ia: 1.1 wagur
| | MqSTac27 THe0NBIZA 202 LR leA hiErF XoH Bt EpPatrHPEofRUE YEWT 2l ZEsUwO3CLP YO 2dey Cennection: cogs
E-SWeRY FvpOB16RPEYLs7F wuDRDaHY 2inog
Carert-Type: apulc:nnisn— {"staus"""success')
W Cotert-Lengh =
DHT 1
pi L vonne\d ion. closs
"4 b
v ¥
() = () G [iwesmmamrom omeres | (2] (=] (5] (5] 7

Done

Figure 2.6.1. Post comment on behalf of another user.

357 bytas | 90 miis

19

Reviews

bender@juice-sh.op
Fry liked it too. !t:

admirn@ uice-sh.op
Very tasty! lt

2, Edit

bender@juice-sh.op
Very tasty! lt:

Figure 2.6.2. Post comment on behalf of another user.

JSA-2.4. Arbitrary file upload

General information

We detected a vulnerability that allows an attacker to
Description bypass file upload restrictions and upload a file with
arbitrary extension to the application server.

CVSS 3.1 score 8.2 High
References to classifications A04:2021, CWE-434
Status Fixed. Date of retest: dd.mm.yyyy

20

Exploitation proof of concept

hd

We discovered a form for complaint where the customer is able to download the file

and submit it along with his complaint to the application server. Using developer tools

console we changed accepted type of input element to “*.xml’ and downloaded maliciously

crafted XML in order to submit it to the server.

Hopas nanka = » Ol [
5 0 @ 9 scors Boara “ o
it R HaTa vameHeHdn M =5 &
2| data 10.07T 3018 1812 Hoeyment ML - W
n ' W vour Basket 3R L. T
(=] b
A
»
nnz
ik
IF | ’
Humr paiine data v | |fxml o= =P

Orepeirs | | Chimena

Figure 2.7.1. File type restrictions bypass.

LD 4

O} tueneerop [Koscone

 aaeccy

¥ o

B B.seta

»

Referencekrror
defined [goxn

a.serattributef accept”, .

ungefined
B.pccept

=l

¥ m w =

E'D...x

MaTiiHE kY HANKEEHHA

selector] #file’)

depugger eval codari:l

After the file was downloaded to the application server it could be executed and

would lead to server compromise.

21

Remediation report

Recommendations

Due to the impact of disclosed vulnerabilities, appropriate resources should be

allocated to mitigate risks and protect the application from malicious threat actors. Future

software development processes should be conducted according to SSDLC's (Secure

Software Development Lifecycle) best practices to prevent additional attack vectors. The

complete list of SSDLC recommendations is listed in OWASP Secure SDLC [4].

3.

4.

We recommend the following:

Fix broken access control vulnerabilities. Please add verification of user
permissions on the server-side to mitigate broken access control issues because it
leads to user impersonation. An attacker could submit malicious data on behalf of
another application user or access his private data. For example, a threat actor
could submit a comment on behalf of another user. Please adjust those few issues
where the access matrix is not followed.

Fix file upload issues. Add more checks to prevent uploading of invalid files to the
application server. It could lead to remote command execution, sensitive
information disclosure and server crashes.

Add strong server-side validation. Because of the high risk of client-side validation
bypass, there should be implemented strong server-side validation. It could mitigate
such issues as stored XSS, SQLi, arbitrary file upload attacks. In the case of arbitrary
file upload please define a list of acceptable extensions on the server-side and
always perform validation of user input.

Add client-side validation. Strong client-side validation could mitigate reflected XSS
attacks. It's important due to the consequences of this attack vector. Using
unprotected application functionality attackers could use it to steal users'
credentials, share malware and other malicious actions. We recommend following

security best practices for MEAN stack projects (as applications implemented using

22

hd

Angular on the client-side) listed here: https://angular.io/guide/security and adding
encoding to the client-side as to the server-side validation.

Implement regular security reviews practice. Regular vulnerabilities assessments
would allow you to mitigate security issues in the early stages and save your
reputation and money.

Add secure coding practices to the development process. Please provide training
for developers to expand their knowledge in secure coding. It will help you to
mitigate many vulnerabilities in the implementation phase.

Use packages analyzer. Integrate Snyk (https://snyk.io/) tool into your

development process to prevent usage of components with known vulnerabilities.
Attackers could use them to conduct successful attacks against apps.
Keep software up to date. Outdated versions carry vulnerabilities and can be

dangerous for the application.

23

https://angular.io/guide/security
https://snyk.io/

Library

OWASP Top Ten project: online resource. - Access link:

h //WWW.0W re/index.php/ rv:OWASP_Top_Ten_Proj

PTES (Penetration Testing Execution Standard): online resource. - Access link:

http://www.pentest-standard.org/index.php/Main Page

OWASP Testing Checklist: online resource. - Access link:

https://github.com/tanprathan/OWASP-Testing-Checklist

Secure SDLC: online resource. - Access link:

https://www.owasp.org/index.php/Secure SDLC Cheat Sheet

24

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
http://www.pentest-standard.org/index.php/Main_Page
https://github.com/tanprathan/OWASP-Testing-Checklist
https://www.owasp.org/index.php/Secure_SDLC_Cheat_Sheet

