
Penetration
Test Report
Sample

OWASP juice-shop February 10th, 2019

▶ ross@techmagic.co TechMagic LLC ▶ https://techmagic.co/

mailto:ross@techmagic.co
https://techmagic.co/


OWASP juice-shop pentest report
—————————————————————————————————————————————————————————————————————————————————————————————————————

Table of content
Executive summary 3

Findings severity ratings 4
Scope 4
Overall security level of the targets in scope 5
Vulnerabilities by impact 6
Successful attacks by type 7
Vulnerabilities by cause 8
Recommendations 9

Vulnerability report 11
demo.owasp-juice.shop 12

JSA-2.1. Unprotected FTP server 12
General information 12
Exploitation proof of concept 12

JSA-2.2. Retrieve backup files using null byte injection 13
General information 13
Exploitation proof of concept 13

JSA-4.1. Private IP disclosure 14
General information 14
Exploitation proof of concept 15

JSA-2.3. Bypass authentication using SQLi 16
General information 16
Exploitation proof of concept 16

JSA-3.1. Reflected XSS in search functionality 17
General information 17
Exploitation proof of concept 18

JSA-3.2. Broken access control on product reviews 18
General information 18
Exploitation proof of concept 19

JSA-2.4. Arbitrary file upload 20
General information 20
Exploitation proof of concept 21

Remediation report 22
Recommendations 22

Library 24

2



OWASP juice-shop pentest report
—————————————————————————————————————————————————————————————————————————————————————————————————————

Executive summary
We conducted a pentest (vulnerability assessment) of the OWASP juice shop

application in order to detect existing web application vulnerabilities and determine

exposure to a targeted attack. All activities were conducted in a manner that simulated a

real threat actor engaged in a targeted attack against OWASP juice shop application with

the next goals:

● Identifying if a remote attacker could penetrate application defenses

● Determining the impact of a security breach on:

- Confidentiality of the company’s private data

- Application infrastructure and its availability

- Confidentiality of the users private information

● Identifying infrastructure issues

● Identifying web application vulnerabilities that could lead to:

- Unauthorized access to confidential data

- Web application users data leak

- Web application DB enumeration in order to retrieve confidential data

- Web application crash

- Exploitation of vulnerable third-party components used by the application

- Malware campaign or targeted attack against web application users with

consequent spear-phishing or SE (Social Engineering) attacks

Efforts were placed on the identification and exploitation of security weaknesses

that could allow a user with limited privileges to access sensitive data, organizational

confidential information, backup files, .etc. The attacks were conducted by taking into

account the check according to the access matrix of all user roles in order to determine

mistakes that could make web applications vulnerable to different kinds of attacks (OWASP

Top 10 vulnerabilities list [1]). The assessments were conducted in accordance with the

recommendations provided in PTES [2] and OWASP Testing Checklist [3] with all tests and

actions being conducted under controlled conditions.

3



OWASP juice-shop pentest report
—————————————————————————————————————————————————————————————————————————————————————————————————————

Findings severity ratings

The following table defines levels of severity and corresponding CVSS score range

that are used throughout the document to assess vulnerability and risk impact.

Severity CVSS V3 Score Range Definition

Critical 9.0-10.0
Exploitation is straightforward and usually results in
system-level compromise. It is advised to form a plan
of action and patch immediately.

High 7.0-8.9

Exploitation is more difficult but could cause elevated
privileges and potentially a loss of data or downtime. It
is advised to form a plan of action and patch as soon
as possible.

Moderate 4.0-6.9

Vulnerabilities exist but are not exploitable or require
extra steps such as social engineering or some actions
from the end-users. It is advised to form a plan of
action and patch after high-priority issues have been
resolved.

Low 0.1-3.9

Vulnerabilities in the low range typically have very little
impact on an organization's business. The exploitation
of such vulnerabilities usually requires local or physical
system access.

Informational N/A
No vulnerability exists. Additional information is
provided regarding items noticed during testing, strong
controls, and additional documentation.

4



OWASP juice-shop pentest report
—————————————————————————————————————————————————————————————————————————————————————————————————————

Scope

Assessment Details

Gray Box Web Application
Penetration Test

Domain:
● owasp-juice.shop Subdomains:
● demo.owasp-juice.shop
● admin.owasp-juice.shop

Overall security level of the targets in scope
The following domains/subdomains were assessed during the engagement:
● owasp-juice.shop
● demo.owasp-juice.shop

The overall security level of the tested web application as a result of the penetration
test is ‘1’. Revealed issues could allow an attacker to obtain an access to an account of any
person, impersonate other users inside the system, trigger errors by providing invalid
input, access files containing sensitive information, .etc.

ʼ

The security levels below are intended to give a high level relative indication of the
position of the application or infrastructure tested in terms of its overall security posture
and in relation to other applications/infrastructures that were tested by our team. In the
below table score ‘0’ means lack of any protection measures and ‘5’ being maximum
possible security level:

5



OWASP juice-shop pentest report
—————————————————————————————————————————————————————————————————————————————————————————————————————

Grade Grade description

5
Application/infrastructure has no identified vulnerabilities; its security
mechanisms has been tested and we did not manage to penetrate or bypass
them

4

Application/infrastructure has no moderate or high-risk, critical vulnerabilities.
Identified low/informational severity issues have very little impact on the
applications security and its end users. It is recommended to review them and
implement required mitigation actions.

3

Application/infrastructure has no critical or high-risk vulnerabilities, but we have
identified several moderate severity issues. These issues can be chained
together to conduct an attack with significant consequences for the application
and its users or they require extra steps such as social engineering for
successful exploitation. There should be created a mitigation plan in order to fix
the identified issues and minimize a risk of exploitation.

2

Application/infrastructure contains vulnerabilities that may allow compromise
in some circumstances. It is advised to form a plan of action and patch as soon
as possible.

1 Application/infrastructure has been partly compromised. It is advised to form a
plan of action and patch immediately.

0 Application/infrastructure has been completely compromised. It is advised to
form a plan of action and patch immediately.

Please note that the definition of compromise in the above indicator is a wide one
and is based on our professional experience taking into account other test applications or
infrastructures as well as industry best practices and user expectations. From our own
experience, level ‘5’ is usually very rarely reached; most tested applications or
infrastructure fall under levels ‘1’, ‘2’ or ‘3’.

6



OWASP juice-shop pentest report
—————————————————————————————————————————————————————————————————————————————————————————————————————

Vulnerabilities by impact

Most of the detected vulnerabilities are related to the demo.owasp-juice.shop

domain. These include various Broken Access Control issues, stored and reflected XSS (Cross

Site Scripting) attacks in different parts of the application, unrestricted file upload issues.

Several SQL injection issues were detected on the admin.owasp-juice.shop domain.

Figure 1.1. Count of detected vulnerabilities by impact.

Successful attacks by type

Most of the detected vulnerabilities are different variants of Broken Access Control

issues. These vulnerabilities allowed us to retrieve sensitive information about other users.

Another dangerous finding is Unrestricted File Upload that allows an attacker to upload an

arbitrary file to the applications’ server.

7



OWASP juice-shop pentest report
—————————————————————————————————————————————————————————————————————————————————————————————————————

Figure 1.2. Count of successful attacks by type.

Vulnerabilities by cause

Figure 1.3. Count of successful attacks by type.

8



OWASP juice-shop pentest report
—————————————————————————————————————————————————————————————————————————————————————————————————————

Recommendations

Due to the serious impact of disclosed vulnerabilities, appropriate resources should

be allocated to mitigate risks and protect the application from malicious threat actors.

Future software development processes should be conducted according to SSDLC's (Secure

Software Development Lifecycle) best practices to prevent additional attack vectors. The

complete list of SSDLC recommendations is listed in the OWASP Secure SDLC cheats sheet

series [4].

We recommend the following:

● Fix broken-access control issue according to roles and permissions matrix

● Fix file upload issues, add more checks to prevent uploading of invalid files and

links.

● Add client-side validation to prevent XSS vulnerabilities;

● Add strong server-side validation. Because of the high risk of client-side validation

bypass, there should be implemented strong server-side validation. It could mitigate

such issues as stored XSS, NoSQLi, arbitrary file upload attacks.

● Fix error handling. Disclosed by the application error logs could help an attacker to

exploit the vulnerability and fix issues in the submitted payload, enumerate valid

usernames, roles, .etc.

● Upgrade insecure third-party dependencies. Please update all used by the

application’s dependencies to prevent exploitation of issues that they introduce.

Long-term recommendations are:

● Implement regular security reviews practice. Regular vulnerability assessments will

help you to mitigate security issues in the early stages and save your reputation and

money.

● Add secure coding practices to the development process. Please provide training for

developers to expand their knowledge in secure coding. It will help you to mitigate

many vulnerabilities in the implementation phase.

9



OWASP juice-shop pentest report
—————————————————————————————————————————————————————————————————————————————————————————————————————

Use package analyzers, static and dynamic application security testing tools in your

development processes. Integrate tools such as the Snyk, Burp Suite, SonarQube, OWASP

ZAP that will help you to detect common issues and vulnerabilities in the application.

10



OWASP juice-shop pentest report
—————————————————————————————————————————————————————————————————————————————————————————————————————

Vulnerability report
In this section you will find a detailed description of all the detected vulnerabilities,

together with a step by step instruction on how to reproduce every vulnerability and

evidence of a successful exploitation. But, before you move on to the vulnerabilities, here is

a brief explanation of how to understand unique identifiers of the documented issues. We

use the following identifier template for every issue:

JSA-1.2

where,

JSA (Juice Shop Application) - abbreviation that describes the tested application

1 - numeric identifier for severity level of the detected vulnerability. Here we mark

severity levels according to the priority of mitigation measures for that issues, so the

most critical issue will receive lower number

Severity
Numeric identifier

(Priority)

Critical 1

High 2

Moderate 3

Low 4

Informational 5

2 - numeric identifier for a specific vulnerability in the selected severity level

11



OWASP juice-shop pentest report
—————————————————————————————————————————————————————————————————————————————————————————————————————

demo.owasp-juice.shop

JSA-2.1. Unprotected FTP server

General information

Description Using spiders we detected an unprotected FTP server
that leaks sensitive application files.

CVSS 3.1 score 7.5 High

References to classifications A01:2021

Status Fixed. Date of retest: dd.mm.yyyy

Exploitation proof of concept

Web application domain for scanning was provided by the customer before the

penetration test started. It’s publicly available information and can be found in OWASP

juice-shop project official documentation. We conduct web application vulnerability

assessment using OWASP ZAP scanner.

During the ZAP scan we detected FTP server that contained confidential information

(see fig. 4).

Figure 2.1.1. FTP folder with confidential data.

12



OWASP juice-shop pentest report
—————————————————————————————————————————————————————————————————————————————————————————————————————

JSA-2.2. Retrieve backup files using null byte injection

General information

Description An attacker is able to read sensitive files on the
application server using null byte injection.

CVSS 3.1 score 7.5 High

References to classifications A01:2021

Status Fixed. Date of retest: dd.mm.yyyy

Exploitation proof of concept

We found two backup files and tried to open them but received 403 Error from the

server.

Figure 2.2.1. Attempt to open package.json.bak file.

During the investigation we found that server allows opening only ‘*.pdf’ and ‘*.md’

files. After that, we decided to apply null byte injection and tried to open stored on FTP

server backup files. The attack was successfully conducted and we managed to download

backup files from OWASP juice-shop ftp server.

13



OWASP juice-shop pentest report
—————————————————————————————————————————————————————————————————————————————————————————————————————

Figure 2.2.2. Downloaded using null byte injection package.json.bak file.

The file contains a full list of project dependencies and can be used for further

investigation of potential vulnerabilities using Snyk dependencies scanner. Full

package.json.bak file provided as an attachment.

JSA-4.1. Private IP disclosure

General information

Description

Automated scanners have detected misconfigured
headers that can be used by attackers to attack an
application, retrieve sensitive information about

technologies that it uses, .etc.

14



OWASP juice-shop pentest report
—————————————————————————————————————————————————————————————————————————————————————————————————————

CVSS 3.1 score 3.9 Low

References to classifications A05:2021

Status Fixed. Date of retest: dd.mm.yyyy

Exploitation proof of concept

ZAP found private IP disclosure vulnerability during the initial scan. This information

might be helpful for further attacks targeting internal systems. Also, the file contains the

URL list with other application domains that could be investigated in the next stages in

order to reveal confidential information and find new vulnerabilities. Complete ZAP scan

report provided as an attachment.

Figure 2.3.1. Private IP disclosure.

15



OWASP juice-shop pentest report
—————————————————————————————————————————————————————————————————————————————————————————————————————

JSA-2.3. Bypass authentication using SQLi

General information

Description
We detected a SQL injection vulnerability that allowed
us to bypass an authentication mechanism and get

access to any account in the system.

CVSS 3.1 score 8.2 High

References to classifications A03:2021

Status Fixed. Date of retest: dd.mm.yyyy

Exploitation proof of concept

We conducted penetration testing of the login form and revealed flow to execute

SQLi injection attack against application authentication and get access to another user

account, including administrator account. It was detected due to insufficient user input

validation and broken server-side error handling. The first step was to provoke internal

server error using invalid data. It allowed us to provoke internal server error which resulted

in source code disclosure with a complete request to the database during login operation.

Figure 2.4.1. Internal Server Error that provides full SQL query in response.

16



OWASP juice-shop pentest report
—————————————————————————————————————————————————————————————————————————————————————————————————————

We decided to conduct a SQLi attack after a detailed server error response analysis.

During the attack, we managed to log into the application under an admin account using

SQLi injection.

Figure 2.4.2. Successful authentication bypass using SQLi.

JSA-3.1. Reflected XSS in search functionality

General information

Description
Automated scanners have detected reflected XSS

vulnerability that allows a malicious actor to execute
arbitrary JS scripts, .etc.

CVSS 3.1 score 5.3 Moderate

References to classifications A03:2021, CWE-79

Status Fixed. Date of retest: dd.mm.yyyy

17



OWASP juice-shop pentest report
—————————————————————————————————————————————————————————————————————————————————————————————————————

Exploitation proof of concept

Our next target was search functionality. Using common templates and best

practices we managed to conduct reflected XSS attacks. The attack resulted in an alert that

contained user cookies. Further investigation of this threat vector could allow the attacker

to steal user credentials or redirect him to the malicious site using spear-phishing

technique.

Figure 2.5.1. Successfully conducted reflected XSS attack

JSA-3.2. Broken access control on product reviews

General information

Description
Broken Access Control issue in product reviews allows

attackers to submit comments on behalf of any
application user.

CVSS 3.1 score 5.3 Moderate

References to classifications A01:2021

18



OWASP juice-shop pentest report
—————————————————————————————————————————————————————————————————————————————————————————————————————

Status Fixed. Date of retest: dd.mm.yyyy

Exploitation proof of concept

To identify broken access control we used Burp Suite proxy interceptor and

modified application requests. The first step was to retrieve the id of the target user from

the reviewers list, returned from the server. After that, we posted a comment under the

admin account and using interceptor replaced author email in the request payload.

Figure 2.6.1. Post comment on behalf of another user.

19



OWASP juice-shop pentest report
—————————————————————————————————————————————————————————————————————————————————————————————————————

Figure 2.6.2. Post comment on behalf of another user.

JSA-2.4. Arbitrary file upload

General information

Description
We detected a vulnerability that allows an attacker to
bypass file upload restrictions and upload a file with

arbitrary extension to the application server.

CVSS 3.1 score 8.2 High

References to classifications A04:2021, CWE-434

Status Fixed. Date of retest: dd.mm.yyyy

20



OWASP juice-shop pentest report
—————————————————————————————————————————————————————————————————————————————————————————————————————

Exploitation proof of concept

We discovered a form for complaint where the customer is able to download the file

and submit it along with his complaint to the application server. Using developer tools

console we changed accepted type of input element to ‘*.xml’ and downloaded maliciously

crafted XML in order to submit it to the server.

Figure 2.7.1. File type restrictions bypass.

After the file was downloaded to the application server it could be executed and

would lead to server compromise.

21



OWASP juice-shop pentest report
—————————————————————————————————————————————————————————————————————————————————————————————————————

Remediation report

Recommendations

Due to the impact of disclosed vulnerabilities, appropriate resources should be

allocated to mitigate risks and protect the application from malicious threat actors. Future

software development processes should be conducted according to SSDLC’s (Secure

Software Development Lifecycle) best practices to prevent additional attack vectors. The

complete list of SSDLC recommendations is listed in OWASP Secure SDLC [4].

We recommend the following:

1. Fix broken access control vulnerabilities. Please add verification of user

permissions on the server-side to mitigate broken access control issues because it

leads to user impersonation. An attacker could submit malicious data on behalf of

another application user or access his private data. For example, a threat actor

could submit a comment on behalf of another user. Please adjust those few issues

where the access matrix is not followed.

2. Fix file upload issues. Add more checks to prevent uploading of invalid files to the

application server. It could lead to remote command execution, sensitive

information disclosure and server crashes.

3. Add strong server-side validation. Because of the high risk of client-side validation

bypass, there should be implemented strong server-side validation. It could mitigate

such issues as stored XSS, SQLi, arbitrary file upload attacks. In the case of arbitrary

file upload please define a list of acceptable extensions on the server-side and

always perform validation of user input.

4. Add client-side validation. Strong client-side validation could mitigate reflected XSS

attacks. It’s important due to the consequences of this attack vector. Using

unprotected application functionality attackers could use it to steal users’

credentials, share malware and other malicious actions. We recommend following

security best practices for MEAN stack projects (as applications implemented using

22



OWASP juice-shop pentest report
—————————————————————————————————————————————————————————————————————————————————————————————————————

Angular on the client-side) listed here: https://angular.io/guide/security and adding

encoding to the client-side as to the server-side validation.

5. Implement regular security reviews practice. Regular vulnerabilities assessments

would allow you to mitigate security issues in the early stages and save your

reputation and money.

6. Add secure coding practices to the development process. Please provide training

for developers to expand their knowledge in secure coding. It will help you to

mitigate many vulnerabilities in the implementation phase.

7. Use packages analyzer. Integrate Snyk (https://snyk.io/) tool into your

development process to prevent usage of components with known vulnerabilities.

Attackers could use them to conduct successful attacks against apps.

8. Keep software up to date. Outdated versions carry vulnerabilities and can be

dangerous for the application.

23

https://angular.io/guide/security
https://snyk.io/


OWASP juice-shop pentest report
—————————————————————————————————————————————————————————————————————————————————————————————————————

Library

1. OWASP Top Ten project: online resource. - Access link:

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

2. PTES (Penetration Testing Execution Standard): online resource. - Access link:

http://www.pentest-standard.org/index.php/Main_Page

3. OWASP Testing Checklist: online resource. - Access link:

https://github.com/tanprathan/OWASP-Testing-Checklist

4. Secure SDLC: online resource. - Access link:

https://www.owasp.org/index.php/Secure_SDLC_Cheat_Sheet

24

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
http://www.pentest-standard.org/index.php/Main_Page
https://github.com/tanprathan/OWASP-Testing-Checklist
https://www.owasp.org/index.php/Secure_SDLC_Cheat_Sheet

